MK2 and Fas Receptor Contribute to the Severity of CNS Demyelination
نویسندگان
چکیده
Models of inflammatory or degenerative diseases demonstrated that the protein-kinase MK2 is a key player in inflammation. In this study we examined the role of MK2 in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In MK2-deficient (MK2-/-) mice we found a delayed onset of the disease and MK2-/- mice did not recover until day 24 after EAE induction. At this day a higher number of leukocytes in the CNS of MK2-/- mice was found. TNFα was not detectable in serum of MK2-/- mice in any stage of EAE, while high TNFα levels were found at day 16 in wild-type mice. Further investigation revealed an increased expression of FasR mRNA in leukocytes isolated from CNS of wild-type mice but not in MK2-/- mice, however in vitro stimulation of MK2-/- splenocytes with rmTNFα induced the expression of FasR. In addition, immunocomplexes between the apoptosis inhibitor cFlip and the FasR adapter molecule FADD were only detected in splenocytes of MK2-/- mice at day 24 after EAE induction. Moreover, the investigation of blood samples from relapsing-remitting multiple sclerosis patients revealed reduced FasR mRNA expression compared to healthy controls. Taken together, our data suggest that MK2 is a key regulatory inflammatory cytokines in EAE and multiple sclerosis. MK2-/- mice showed a lack of TNFα and thus might not undergo TNFα-induced up-regulation of FasR. This may prevent autoreactive leukocytes from apoptosis and may led to prolonged disease activity. The findings indicate a key role of MK2 and FasR in the regulation and limitation of the immune response in the CNS.
منابع مشابه
P 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...
متن کاملNogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context
Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...
متن کاملApoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis.
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, immunization with myelin Ags leads to demyelination and paralysis. To investigate which molecules are crucial for the pathogenesis of EAE, we specifically assessed the roles of the death receptors Fas and TNF-R1. Mice lacking Fas expression in oligodendrocytes (ODCs) were generated and crossed to TNF-R1-...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کامل